CHANGES IN THE Pr.INDUCED TC DEPRESS:ON OF 123 COMPOUNDS BY CHEMICAL PRESSURE

G. NIEVA , B. W. LEE, J. GUIMPELS . H. IWASAKIt , M. B. MAPLE, and IVAN K. SCHULLER

Physics Department-0319, University of Calitornia-San Diego, La Jolla, CA 92093-0319, USA.
We present structural data refined from X-ray spectra for $\mathrm{R}_{1-x} \mathrm{Pr}_{\mathrm{x}} \mathrm{Ba}_{2} \mathrm{Cu}_{3} \mathrm{O}_{7-\delta}$ ($\mathrm{R}=\mathrm{Er}, \mathrm{Gd}, \mathrm{Eu}, \mathrm{Sm}, \mathrm{Nd}$) systems with $x=0,0.1$, and 0.4 . The evolution of T_{c} with the ionic radius of the rare earth for different values of x can be related to the Cu2-04 distance. The effect of chemical pressure on T_{c} in $\mathrm{R}_{1-x} \mathrm{Pr}_{x} \mathrm{Ba}_{2} \mathrm{Cu}_{3} \mathrm{O}_{7-\delta}$ systems is opposite to that of hydrostatic pressure on the $\mathrm{Y}_{1-\mathrm{x}} \mathrm{Pr}_{\mathrm{x}} \mathrm{Ba}_{2} \mathrm{Cu}_{3} \mathrm{O}_{7 . \delta}$ system.
$\mathrm{PrBa}_{2} \mathrm{Cu}_{3} \mathrm{O}_{7 . \delta}$ is the only member of the series of $\mathrm{RBa}_{2} \mathrm{Cu}_{3} \mathrm{O}_{7-0}$ ($\mathrm{R}=$ rare earth) compounds that is nonmetallic and non-superconducting. The depression of the superconducting critical temperature, T_{c}, in $\mathrm{RBa}_{2} \mathrm{Cu}_{3} \mathrm{O}_{7-8}$ compounds by Pr substitution is a puzzling aspect of the physics of these high T_{c} oxides. There is a controversy about the mechanism for depression of superconductivity. Hole filling, hole trapping, magnetic pair breaking, or a combination of these effects have been suggested as possible mechanisms. Evidence of hybridization between Pr $4 f$ electrons and those in the CuO_{2} valence band has been found in several experiments. 1

The depression of T_{c} by Pr substifution in the R site depends on the particular R ion. The larger the ionic radius of R, the steeper is the T_{c} vs x curve for $\mathrm{R}_{1-\mathrm{x}} \mathrm{Pr}_{x} \mathrm{Ba}_{2} \mathrm{Cu}_{3} \mathrm{O}_{7-8}$ and, hence, the smaller the critical concentration $x_{\text {crit }}$ for the destruction of superconductivity. The aim of this paper is to point out the subtle structural differences that may be related to this characteristic of the depression of T_{c} in $\mathrm{R}_{1-\mathrm{x}} \mathrm{Pr}_{\mathrm{x}} \mathrm{Ba}_{2} \mathrm{Cu}_{3} \mathrm{O}_{7-\delta}$ systems and also to discuss an apparent contradiction concerning the effect on T_{c} of chemical pressure in $\mathrm{R}_{1-\mathrm{x}} \mathrm{Pr}_{\mathrm{x}} \mathrm{Ba}_{2} \mathrm{Cu}_{3} \mathrm{O}_{7.8}$ and hydrostatic pressure in $\mathrm{Y}_{1 \cdot x} \mathrm{Pr}_{x} \mathrm{Ba}_{2} \mathrm{Cu}_{3} \mathrm{O}_{7 \cdot \delta}$.

Samples of $\mathrm{A}_{1-x} \mathrm{Pr}_{x} \mathrm{Ba}_{2} \mathrm{Cu}_{3} \mathrm{O}_{7-8}$ with $\mathrm{R}=\mathrm{Er}, \mathrm{Y}, \mathrm{Gd}$. $\mathrm{Eu}, \mathrm{Sm}, \mathrm{Nd}$ and $\mathrm{x}=0,0.1,0.4$ were prepared by solic state reaction. 1 The final sintering temperatures in flowing oxygen were varied from $950^{\circ} \mathrm{C}$ to $970^{\circ} \mathrm{C}$ for
$\mathrm{R}=\mathrm{Er}$ to Nd . The $\mathrm{R}=\mathrm{La}$ sample was sintered at the higher temperature $\left(970^{\circ} \mathrm{C}\right.$) ir. a N_{2} atmosphere, followed by annealing in oxygen. lodometric titration on representative samples yielded an oxygen content of $\delta=0.02-0.07$. The electrica! resistivity was measured using a standard four point ac method (16 Hz). The dc magnetization of the $x=0.4$ samples was measured with a SQUID magnetometer in the temperature range 5 K to 80 K . X-ray diffraction measurements were performed using a potating anode Rigaku diffractometer. Intensity data were collected in 0.018° steps for 9 sec in a 20 range of 20° to 90°. The structural parameters were obtained with tha Rietveld refinement program RIETAN ${ }^{2}$

Finury shows the superconducting transition temperature obtained from slectrical resistivit; measurements as a function of the ionic radius of R^{3+} in $\mathrm{R}_{1-\times} \mathrm{Pr}_{\mathrm{x}} \mathrm{Ba}_{2} \mathrm{Cu}_{3} \mathrm{O}_{7-\delta}$ systems. The squares in the figure correspond to a 50% drop in resistivity, relative to the extrapolated normal state value, while the transition widths were calculated as the difference between the temperatures of the 10% and 90% resistivity drops. While T_{c} increases with the ionie radus of R^{3+} for $\mathrm{RBa}_{2} \mathrm{Cu}_{3} \mathrm{C}_{7} . \delta$ sysiems, ${ }^{3}$ it decreases for Dr concentrations of $x=0.1$ and $x=0.4$, with the dacrasese bsing much mora dramatic for $x=0.4$. Zero fisld cooling (ZFS) magnotization data iakor : magnetic fiald of 10 Oe for the superconductine samples of the series $\mathrm{R}_{\mathrm{C}} \mathrm{PrO} \mathrm{P}_{2} \mathrm{Ba}_{2} \mathrm{Cu}_{3} \mathrm{O}$

[^0]

FIGURE 1
Superconducting critical temperature for $\mathrm{R}_{1-x} \mathrm{Pr}_{\mathrm{x}} \mathrm{Ba}_{2} \mathrm{Cu}_{3} \mathrm{O}_{7-5}$ systems as a function of R^{3+} ionic radius.
showed that the Meissner fraction decreases from 40% to 0.5% in going from R=Er to Eu.

The distance betweon the Cu ion in the CuO_{2} plane and the apical oxygen, Cu2-04, has been shown to be relevant for the charge transter mechanism from the chains to the planes. In Fig. 2 we show the trend of these distances for the $x=0,0.1$, and $x=0.4$ samples. In spite of large errors in the determination of this distance, a different trend is observed for the samples with and without Pr. A decrease of the distance Cu2-04 with increasing ionic radius of R^{3+} for the $\mathrm{x}=0$ samples may indicate more charge transier to the CuO_{2} planes, and this could be related to the increase in $T_{c}{ }^{3}$ The opposite behavior is observed for the $x=0.1$ and 0.4 sampies were T_{c} decreases in going from Er to Nd.

A compression of the Cu2.O4 distance with hydrostatic pressure is known to occur in $\mathrm{YBa}_{2} \mathrm{Cu}_{3} \mathrm{O}_{7.8^{4}}$ and expected to take place in the $\mathrm{Y}_{1-\mathrm{x}} \mathrm{Pr}_{\mathrm{x}} \mathrm{Ba}_{2} \mathrm{Cu}_{3} \mathrm{O}_{7 . \delta}$ system. For $\mathrm{Y}_{0}{ }_{6} \mathrm{Pr}_{0}{ }_{4} \mathrm{Ba}_{2} \mathrm{Cu}_{3} \mathrm{O}_{7 . \delta}$, T_{C} decreases with hydrostatic pressure ${ }^{5}$ and also decreases with negative chemical pressure applied on the P_{i} ions; i.e., T_{c} decreases in going from $\mathrm{Y}_{0} \mathrm{Pr}_{0} \mathrm{Ba}_{2} \mathrm{Cu}_{3} \mathrm{O}_{7.8}$ to $\mathrm{Eu}_{0} \mathrm{Pr}_{0}{ }_{4} \mathrm{Ba}_{2} \mathrm{Cu}_{3} \mathrm{O}_{7.8}$ (Fig.1) This suggests that the Cu2.04 distance, which has the same trend for hydrostatic and chemical pressure, is not the only relevant parameter for the samples with $x=0.4$. It is reasonabla to cunclude that the solution for this apparent contradiction is related to the distances

FIGURE 2
Cu2-O4 distances in $\mathrm{R}_{1-x} \mathrm{Pr}_{x} \mathrm{Ba}_{2} \mathrm{Cu}_{3} \mathrm{O}_{7.5}$ systems as a function of R^{3+} ionic radius. The data without the error bars are calculated from neutron diffraction data (Ref.6).
between the Pr ions and the ions in the CuO_{2} planes. We have studied the Pr-Cu2, Pr-O2 and Pr-O3 distances for $x=0,0.1$, and 0.4. In all cases there is a monotonic increase with the A ionic radius, the Pr-O3 distance showing a steeper slope in the case $x \neq 0$.

REFERENCES

1. G. Nieva, S. Ghamaty, B. W. Lee, M. B. Maple and Ivan K. Schuller, Phys. Rev. B (submitted).

2 F. Izumi, Figaku J. 6 (1989) 10; F. Izumi, "Advances in the Rietveld Method", edited by RA. Young, (Oxford University Press, in press).

3 B. W. Lee Ph D Thesis, University of California, San Diego 1990 (unpublished)
4. J.D Jorgensen, S Pai. P Lightfoot, D. G. Hinks, B W Veal 5 Dabrousk. A P Paulikas, R. Klob and I. D. Erown, Physica C 171 (1990) 93.
5. J. J Noumbier, M. S. Maple and M. S Torikachvili. Phusica C 156 (1989) 574.

6 J J Neumeier, T Bjornoim, M B Maple, J J Fhyne and ' A Gotaas Physica C 166 (1990) 191. 5 Fupp, E. Porschka, P Meutiels, P. Fischer, and P Allenspact. Phys. Rev. B 40 (1989) 4472.

[^0]: § On leave from Centro Atómico Bariloche, 8400 Bariloche, Aigentina
 † Permanent address: Institute for Materials Research, Tohoku University, Sendai 930, Japan
 Work supported by DOE Grant DE FG03-86ER-45230 (GN, BWL, MBM) and ONR Grant NOU014-88K.0480 (ON. こ IKS). Some international travel support for GN and JG provided by CONICET, Argertina

